APLIKASI KALKULATOR AIR SOLUSI UNTUK MENGETAHUI KEBUTUHAN CAIRAN DALAM TUBUH BERBASIS ANDROID

I Komang Setia Buana¹, I Ketut Dedy Suryawan²

¹, ² Sistem Komputer, STMIK STIKOM Bali
³ Jln Raya Puputan Renon No 86, Denpasar - Bali
¹ buana@stikom-bali.ac.id, ² dedy_meng@stikom-bali.ac.id

Abstrak

Kata kunci : cairan tubuh, IWL, android

1. Pendahuluan

Cairan merupakan kebutuhan terpenting dari tubuh manusia. Hampir 90% penyusun tubuh manusia adalah air. Manusia dapat bertahan hidup selama 8 minggu tanpa makanan, namun tanpa air manusia hanya dapat bertahan selama 3-5 hari saja. Manusia sangat membutuhkan air untuk bisa bertahan hidup, karena setiap hari orang kehilangan cairan melalui keringat, urin, fiset bahkan saat bernapas hingga 1,5 liter per hari (Potter & Perry, 2010). An 'sangat penting untuk organ-organ dalam tubuh agar bisa bekerja dengan baik. Bagi pentingnya cairan bagi tubuh manusia hingga kekhatman cairan dalam manuria kekurangan cairan (atau disebut dengan dehidrasi) seperti misalnya pada keadaan diare, kepanasan, atau demam dapat menyebabkan kematian yang mendadak. Risiko utama orang hidup tanpa air dan kondisi panas adalah suhu tubuh akan terus meningkat dan orang tersebut bisa mengalami 'heat stroke'. Tapi jika orang tersebut minum air maka menurunkan suhu inti dan dapat mendinginkannya. Orang yang kehilangan banyak cairan akan ditandai dengan mulut kering, mata cekung, jantung berdetak cepat, mudah tersinggung, muntah dan diare. Tahap akhir dehidrasi adalah tubuh mengalami shock ditandai dengan kulit biru keabu-abuan dan jika disentuh.

Kebutuhan cairan sehari-hari pada orang bisa berbeda, tergantung kondisi usia, jenis kelamin, suhu lingkungan, makanan yang dikonsumsi, maupun aktivitasnya. Sebagai contoh, orang yang melakukan aktivitas fisik seperti olahraga akan berbeda kebutuhannya dibandingkan dengan orang kantoran yang banyak duduk. Kelompok usia lanjut yang tidur memilki kebutuhan cairan lebih sedikit dibandingkan orang dewasa yang masih sangat aktif secara fisik. Orang yang mengalami ginjal sangat dibatasi asupan cairan mereka yang ginjalnya sehat itulah setiap orang hendaknya menghitung kebutuhan cairan tubuhnya masing-masing dengan kondisinya sehingga diperlukan aplikasi yang dapat memudahkan mereka untuk menghitung kebutuhan cairannya (Thakare, & Aute, 2013).
2.1 Alur Analisis
Aplikasi Kalkulator air adalah aplikasi yang membantu anda dalam menghitung konsumsi air yang harus diminum per hari. Hasil perhitungan dapat disimpan dan dapat dilihat pada menu Riwayat. Dibawah ini adalah chart system kerja aplikasi.

Kerja Aplikasi:
1. Kebutuhan cairan ideal

 start

 Inputkan usia, jenis kelamin, aktivitas yang sedang dilakukan, berat badan, dan suhu

 Perhitungan rumus kebutuhan cairan tubuh

 Hasil perhitungan

 Stop

2. Konsumsi cairan harian

 start

 Inputkan cairan yang masuk

 Inputkan cairan yang keluar

 Perhitungan rumus cairan harian

 Hasil perhitungan cairan harian

 Stop

Untuk input data awal, user perlu memasukkan usia, jenis kelamin, kriteria aktivitas yang sedang dilakukan (aktivitas ringan, sedang, atau berat), berat badan dan suhu tubuh. Maka akan muncul tampilan kadar kebutuhan cairan tubuhnya. Untuk mengetahui apakah jumlah cairan yang masuk seimbang dengan jumlah cairan yang keluar dapat digunakan rumus dari jumlah cairan yang masuk sama dengan jumlah cairan yang keluar ditambah IWL (Insensible Water Loss). Awalnya user diminta untuk menginput data jumlah cairan yang masuk dengan memasukkan data jumlah air yang diminum, terapi cairan tambahan (misalnya infus), kandungan cairan dalam makanan pasien, volume obat-obatan yang sedang dipakai atau diminum. Setelah itu untuk jumlah cairan keluar, user diminta menginput data jumlah urin dalam 24 jam (jika urine tidak diukur, dapat diisi frekuensi buang air kencing dalam 24 jam), kemudian buang air besar atau tidak dalam 24 jam terakhir, berapa kali buang air besar dalam 24 jam. Hasil akhirnya akan muncul kebutuhan cairan kita (defisit (kurang) atau excess (berlebih)) (Sulakhe, Thakare, & Apte, 2013)

2.1.1 Diagram Unified Modeling Language (UML)
Berikut ini adalah diagram-diagram yang merepresentasikan rancangan dari modul yang akan dibuat, meliputi use case diagram, activity diagram, class diagram, dan sequence diagram (DiMarzio, 2008)

a. Use case diagram
Use case diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem. Yang ditekankan adalah “apa” yang diperbuat sistem, dan bukan “bagaimana”. Dapat dilihat bahwa ada sebuah actor yaitu user, dimana user memiliki 4 aktivitas yang dapat dilakukan, yaitu melakukan pencarian hasil dari kebutuhan cairan ideal yang didapat dari perhitungan (Murphy, 2011). Kemudian yang kedua mengetahui berapa konsumsi cairan yang anda minum. Selain itu user juga bisa melihat riwayat dari perhitungan sebelumnya. Dibawah ini merupakan usecase diagram dari aplikasi ini
b. Activity diagram

Activity diagram dari aplikasi ini, dimulai dari menu utama (kalkulator air) sampai aplikasi ditutup. Terlihat pada gambar dibawah, user bisa melakukan proses untuk mendapatkan kebutuhan cairan ideal, konsumsi cairan harian, berita kesehatan dan dapat membuka menu tentang (about).

c. Sequence Diagram

Sequence diagram dari aplikasi yang dibuat menceritakan proses yang dialami sistem. Pertama kali user akan masuk ke menu KalkulatorAir. Dalam menu tersebut terdapat pilihan untuk mencari nilai kebutuhan cairan ideal, mengetahui konsumsi cairan harian, melihat Informasi berita kesehatan, riwayat, dan ada juga pilihan tentang aplikasi (about).

d. Class diagram

Class diagram dari aplikasi ini terdiri dari class. Class KalkulatorAir merupakan kelas yang akan dipanggil terlebih dahulu, kemudian kelas utama tersebut akan memanggil kelas sesuai dengan reques dari user.

3. Hasil dan Pembahasan

3.1 Menu utama (Kalkulator Air)

Kebutuhan Cairan Ideal
Kebutuhan cairan ideal merupakan menuangkan untuk mendapatkan cairan ideal yang akan tubuh kita. Untuk mendapatkan harus memasukkan tinggi badan, usia, jenis kelamin, aktivitas yang dilakukan, dan suhu tubuh.

Rumus 3 terlihat dibawah ini:

<table>
<thead>
<tr>
<th>AKTIVITAS</th>
<th>FAKTOR AKTIVITAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringan</td>
<td></td>
</tr>
<tr>
<td>- Laki-laki</td>
<td>1,56</td>
</tr>
<tr>
<td>- Perempuan</td>
<td>1,55</td>
</tr>
<tr>
<td>Sedang</td>
<td></td>
</tr>
<tr>
<td>- Laki-laki</td>
<td>1,76</td>
</tr>
<tr>
<td>- Perempuan</td>
<td>1,70</td>
</tr>
<tr>
<td>Berat</td>
<td></td>
</tr>
<tr>
<td>- Laki-laki</td>
<td>2,10</td>
</tr>
<tr>
<td>- Perempuan</td>
<td>2,00</td>
</tr>
</tbody>
</table>

AMB laki-laki:
66,5+(13,7XBB)+(5,0XTB)-(6,8XUmur)
AMB perempuan:
65,5+(9,6XBB)+(1,8XTB)-(4,7XUmur)
Total Kalori (kcal):
Faktor aktivitas X AMB
* Kebutuhan cairan : 1 kcal Total Kalori
: 1 ml cairan

Rumus 4 terlihat dibawah ini:

USIA < 17 TAHUN
untuk 10 Kg pertama → x 100ml
untuk 10 Kg kedua → x 50ml
untuk 10 Kg selanjutnya → x 25ml
Contoh: Hitung kebutuhan cairan anak jika
BB 26 Kg
Keb. Cairan = (10×100)+(10×50)+(6×25)
: 1000+500+150
: 1650 ml

USIA >17 TAHUN
= 50 X BB

Rumus 5 terlihat dibawah ini:

SUHU NORMAL 36-37,5 ºC
Jika suhu tubuh meningkat lebih dari normal maka kebutuhan cairan di tambah 12% nya
Rumus = (suhu tubuh-37,5)X 12% X rata2 jumlah kebutuhan per hari

Untuk rumus 5, ketika suhu tubuh normal ataupun dibawah normal, untuk menghitung cairan ideal, rumus 5 diabaikan.

Dalam pengujiananya, diambil 3 orang sebagai sample dengan hasil seperti dibawah ini:

2 = 57 % X BB
3 = 55 % X BB
Jika di klik proses akan muncul hasil dari kebutuhan cairan ideal.
KONSUMSI CAIRAN HARIAN

CAIRAN MASUK
- **MINUM**
 - 1 gelas = 240 ml
- **MAKAN MAKANAN BERKUAYA DALAM 1 HARI**
 - 1 kali makan = 100 ml
- **CAIRAN INFUS**
 - **YA**
 - **TIDAK**

KONSUMSI CAIRAN HARIAN

- **CAIRAN KELUAR**
 - **BUANG AIR KECIL**
 - 1 kali BAK = 200 ml
 - **BUANG AIR BESAR**
 - 1 kali BAB = 600 ml
 - **MUNTAH**
 - 1 kali muntah = 50 ml
 - **DRAIN**
 - **YA**
 - **TIDAK**

IWL = 15 ML X BB

KONSUMSI CAIRAN HARIAN ANDA

= JUMLAH CAIRAN YANG MASUK - (JUMLAH CAIRAN YANG KELUAR + IWL)

4. Kesimpulan dan Saran

4.1 Kesimpulan
Kesimpulan yang dapat diambil dari penelitian ini adalah:
1. Aplikasi kalkulator air, berjalan lancar di sistem operasi android 4.0
2. Dengan menggunakan aplikasi kalkulator air, penghitungan kubutuhan cairan menjadi lebih mudah
3. Dengan menggunakan aplikasi ini, dapat mengetahui konsumsi cairan perhari.

4.2 Saran
Saran yang dapat diberikan untuk penelitian ini adalah:
1. Design tampilan perlu dibuat lebih menarik lagi
2. Adanya web service yang digunakan untuk memanipulasi data, sehingga selain melakukan perhitungan, adanya informasi-informasi yang penting bagi user, bisa dimasukan kesana.
3. Adanya penambahan kasus, selain melakukan penghitungan kebutuhan cairan dan konsumsi cairan perhari, juga ditambah untuk melakukan perhitungan untuk penggantian cairan, kebutuhan cairan untuk pasien gagal jantung, gagal ginjal dan diare.

5. Daftar Pustaka

Buud, Timoty (2009). Understanding C# Oriented Programming With the Material : USA

Murphy, M.L. (2011). Android Programming Tutorials. USA: Commons Ware

Chan, B. (2012). Pedi QuikCalc app is true name, a quick and easy medical calculator for pediatricians. iMedicalApps Journal.